820 research outputs found

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    Patterning of the C. elegans 1° vulval lineage by RAS and Wnt pathways

    Get PDF
    In C. elegans, the descendants of the 1° vulval precursor cell (VPC) establish a fixed spatial pattern of two different cell fates: E-F-F-E. The two inner granddaughters attach to the somatic gonadal anchor cell (AC) and generate four vulF cells, while the two outer granddaughters produce four vulE progeny. zmp-1::GFP, a molecular marker that distinguishes these two fates, is expressed in vulE cells, but not vulF cells. We demonstrate that a short-range AC signal is required to ensure that the pattern of vulE and vulF fates is properly established. In addition, signaling between the inner and outer 1° VPC descendants, as well as intrinsic polarity of the 1° VPC daughters, is involved in the asymmetric divisions of the 1° VPC daughters and the proper orientation of the outcome. Finally, we provide evidence that RAS signaling is used during this new AC signaling event, while the Wnt receptor LIN-17 appears to mediate signaling between the inner and outer 1° VPC descendants

    A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development

    Get PDF
    During C. elegans vulval development, the anchor cell (AC) in the somatic gonad expresses lin-3, activating the EGF receptor signaling pathway in vulval precursor cells (VPCs) and thereby inducing and patterning VPCs. Previous studies with lin-3 mutants and transgene expression have revealed that the level of LIN-3 in the AC must be precisely regulated for proper vulval development. To understand how lin-3 expression is achieved in the AC, we identified a 59 bp lin-3 enhancer sufficient to activate lin-3 transcription solely in the AC. The enhancer contains two E-box elements, and one FTZ-F1 nuclear hormone receptor (NHR) binding site that is mutated in a vulvaless mutant, lin-3(e1417). Mutagenesis studies show that both E-boxes and the NHR binding site are necessary to express lin-3 in the AC. In vitro DNA-binding studies and in vivo functional assays indicate that distinct trans-acting factors, including the E-protein/Daughterless homolog HLH-2 and unidentified nuclear hormone receptor(s), are necessary for lin-3 transcription in the AC and thus are involved in vulval development

    Symmetry breakage in the development of one-armed gonads in nematodes

    Get PDF
    Whereas the hermaphrodite gonad of Caenorhabditis elegans has two symmetric arms (didelphy), the female/hermaphrodite gonad of many nematode species features a single anterior arm (monodelphy). We examined how gonadal cell lineages and intercellular signalling evolve to generate these diverse structures. In C. elegans, the two arms develop symmetrically from two somatic precursor cells, Z1 (anterior) and Z4 (posterior). Each first gives rise to one distal tip cell (which promotes arm growth and germ line proliferation), two ovary precursors and three uterine precursors in the center of the developing gonad. In monodelphic species, Z1 and Z4 have different fates. The first visible asymmetry between them is in the relative timing of their divisions, followed by asymmetric cell movements. The putative posterior distal tip cell is then eliminated in all but one species by programmed cell death. In some species the posterior ovary precursors form a small vestigial posterior arm, the post-vulval sac; in other species, they stay undivided, or die. In Cephalobus sp. PS1197, the specific fate of Z4 progeny is induced by Z1 (or its daughters). In the uterus in C. elegans, symmetric lateral signalling between Z1.ppp and Z4.aaa renders them equally likely to become the anchor cell, which links the uterus to the vulva. In the different monodelphic species, anchor cell specification is biased, or fully fixed, to a descendant of either Z1 or Z4. Replacement regulation upon anchor cell ablation is conserved in some species, but lost in others, leading to a mosaic-type development. Differentiation between Z1 and Z4 is thus manifested at this later stage in the breakage of symmetry of cell interactions in the ventral uterus

    Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor

    Get PDF
    The major determinants of receptor tissue tyrosine kinase (RTK) signaling specificity have been proposed to be Src homology 2 (SH2) binding sites, phosphotyrosine-containing oligopeptides in the cytoplasmic domain of the receptor. The Caenorhabditis elegans epidermal growth factor receptor homologue LET-23 has multiple functions during development and has eight potential SH2-binding sites in a region carboxyl terminal to its kinase domain. By analyzing transgenic nematodes for three distinct LET-23 functions, we show that six of eight potential sites function in vivo and that they are required for most, but not all, of LET-23 activity. A single site is necessary and sufficient to promote wild-type fertility. Three other sites activate the RAS pathway and are involved only in viability and vulval differentiation. A fifth site is promiscuous and can mediate all three LET-23 functions. An additional site mediates tissue-specific negative regulation. Putative SH2 binding sites are thus key effectors of both cell-specific and negative regulation in an intact organism. We suggest two distinct mechanisms for tissue-specific RTK-mediated signaling. A positive mechanism would promote RTK function through effectors present only in certain cell types. A negative mechanism would inhibit RTK function through tissue-specific negative regulators

    Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts

    Get PDF
    Background: Heterorhabditis bacteriophora is applied throughout the world for the biological control of insects and is an animal model to study interspecies interactions, e.g. mutualism, parasitism and vector-borne disease. H. bacteriophora nematodes are mutually associated with the insect pathogen, Photorhabdus luminescens. The developmentally arrested infective juvenile (IJ) stage nematode (vector) specifically transmits Photorhabdus luminescens bacteria (pathogen) in its gut mucosa to the haemocoel of insects (host). The nematode vector and pathogen alone are not known to cause insect disease. RNA interference is an excellent reverse genetic tool to study gene function in C. elegans, and it would be useful in H. bacteriophora to exploit the H. bacteriophora genome project, currently in progress. Results: Soaking L1 stage H. bacteriophora with seven dsRNAs of genes whose C. elegans orthologs had severe RNAi phenotypes resulted in highly penetrant and obvious developmental and reproductive abnormalities. The efficacy of postembryonic double strand RNA interference (RNAi) was evident by abnormal gonad morphology and sterility of adult H. bacteriophora and C. elegans presumable due to defects in germ cell proliferation and gonad development. The penetrance of RNAi phenotypes in H. bacteriophora was high for five genes (87-100%; Hba-cct-2, Hba-daf-21, Hba-icd-1; Hba-nol-5, and Hba-W01G7.3) and moderate for two genes (usually 30-50%; Hba-rack-1 and Hba-arf-1). RNAi of three additional C. elegans orthologs for which RNAi phenotypes were not previously detected in C. elegans, also did not result in any apparent phenotypes in H. bacteriophora. Specific and severe reduction in transcript levels in RNAi treated L1s was determined by quantitative real-time RT-PCR. These results suggest that postembryonic RNAi by soaking is potent and specific. Conclusion: Although RNAi is conserved in animals and plants, RNAi using long dsRNA is not. These results demonstrate that RNAi can be used effectively in H. bacteriophora and can be applied for analyses of nematode genes involved in symbiosis and parasitism. It is likely that RNAi will be an important tool for functional genomics utilizing the high quality draft H. bacteriophora genome sequence

    The lin-3/let-23 pathway mediates inductive signalling during male spicule development in Caenorhabditis elegans

    Get PDF
    During Caenorhabditis elegans male spicule development, four pairs of precursor cells respond to multiple positional cues and establish a pattern of fates that correlates with relative anterior-posterior cell position. One of the extracellular cues is provided by the F and U cells, which promote anterior fates. We show that the genes in the lin-3/let-23 signalling pathway required for hermaphrodite vulval induction also mediate this F/U signal. Reduction-of-function mutations in lin-3, let-23, sem-5, let-60 or lin-45 disrupt the fate of anterior cells. Likewise, activation of the pathway with ubiquitously produced signal results in posterior cells inappropriately adopting the anterior fates even in the absence of F and U. We have further used this genetic pathway to begin to understand how multiple positional cues are integrated to specify cell fate. We demonstrate that lin-15 acts in spicule development as it does in vulval induction, as a negative regulator of let-23 receptor activity. A second extracellular cue, from Y.p, also acts antagonistically to the lin-3/let-23 pathway. However, this signal is apparently integrated into the lin-3/let-23 pathway at some step after lin-45 raf and is thus functionally distinct from lin-15. We have also investigated the role of lin-12 in forming the anterior/posterior pattern of fates. A lin-12 gain-of-function defect is masked by redundant positional information from F and U

    The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva

    Get PDF
    Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types

    Evolution of a polymodal sensory response network

    Get PDF
    Background: Avoidance of noxious stimuli is essential for the survival of an animal in its natural habitat. Some avoidance responses require polymodal sensory neurons, which sense a range of diverse stimuli, whereas other stimuli require a unimodal sensory neuron, which senses a single stimulus. Polymodality might have evolved to help animals quickly detect and respond to diverse noxious stimuli. Nematodes inhabit diverse habitats and most nematode nervous systems are composed of a small number of neurons, despite a wide assortment in nematode sizes. Given this observation, we speculated that cellular contribution to stereotyped avoidance behaviors would also be conserved between nematode species. The ASH neuron mediates avoidance of three classes of noxious stimuli in Caenorhabditis elegans. Two species of parasitic nematodes also utilize the ASH neuron to avoid certain stimuli. We wanted to extend our knowledge of avoidance behaviors by comparing multiple stimuli in a set of free-living nematode species. Results: We used comparative behavioral analysis and laser microsurgery to examine three avoidance behaviors in six diverse species of free-living nematodes. We found that all species tested exhibit avoidance of chemo-, mechano- and osmosensory stimuli. In C. elegans, the bilaterally symmetric polymodal ASH neurons detect all three classes of repellant. We identified the putative ASH neurons in different nematode species by their anatomical positions and showed that in all six species ablation of the ASH neurons resulted in an inability to avoid noxious stimuli. However, in the nematode Pristionchus pacificus, the ADL neuron in addition to the ASH neuron contributed to osmosensation. In the species Caenorhabditis sp. 3, only the ASH neuron was required to mediate nose touch avoidance instead of three neurons in C. elegans. These data suggest that different species can increase or decrease the contribution of additional, non-ASH sensory neurons mediating osmosensation and mechanosensation. Conclusion: The overall conservation of ASH mediated polymodal nociception suggests that it is an ancestral evolutionarily stable feature of sensation. However, the finding that contribution from non-ASH sensory neurons mediates polymodal nociception in some nematode species suggests that even in conserved sensory behaviors, the cellular response network is dynamic over evolutionary time, perhaps shaped by adaptation of each species to its environment
    corecore